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When a chemical sample made of N elements is analyzed by using sequential selec-
tive excitation by monochromatic X-ray beams and selective measurement of the char-
acteristic X-rays, the production of secondary fluorescence does not interfere with the
measurements. This experimental situation leads to a particular simple case of the Sher-
man equations which can be written in this instance as linear equations. The linear
equations thus obtained are shown to be very similar to the equations appearing in the
classical models of Beattie and Brissey and of Lachance and Traill. The linear algebra
proves the existence of N different sets of solutions, but the Perron Frobenius theorem
ensures that there is one and only one physically feasible solution, and also leads to the
method for obtaining it. This equation solution method can be extended to the equa-
tions appearing when standard samples of pure elements are also measured.The prop-
agation of the errors in the measurements to the errors in the sample concentrations
has been calculated and simulated, and the results have shown that the solution is well
conditioned.

KEY WORDS: x-ray fluorescence analysis, Sherman equation, fundamental para-
meters method, Perron theorem, iterative methods, Beattie and Brissey equations,
Lachance and Traill equations

1. Introduction

Let us consider the following experimental situation of selective excitation
and selective measurement: we have a thick sample made of N chemical elements
which is excited at 45◦ by a tunable monoenergetic photon source of known
intensity, and the fluorescence produced is measured also at 45◦ with a detector
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of known relative efficiency. When the sample is excited sequentially at N dif-
ferent energies, each one over the K edge of each element but under the K edge
of the following element, and we measure the K alpha fluorescence of such ele-
ment each time, there is no contribution of secondary fluorescence to the mea-
surements, and the Sherman equations can thus be written as:

Gi = εεri√
2

Ci

Iiσi (hνi)
∑j=n

j=1 µj (hνi) Cj + ∑j=n

j=1 µj(hνEKαi
)Cj

, (1)

j=n∑

j=1

Cj = 1, (2)

Ci > 0 ∀i,

ε > 0,

where Gi is the K-fluorescence of element i; Ci is the concentration of element i;
ε is the unknown global efficiency and εri is the relative efficiency at the energy of
the characteristic radiation of the element i; Ii is the intensity of the exciting beam,
σi (hνi) is the fluorescence production cross-section of element i at its corresponding
excitation energy hνi ; n = N is the number of elements; µj (hνi) is the attenuation
coefficient of element j at its excitation energy hνi , and µj

(
hνEKαi

)
is the attenuation

coefficient of element j at the energy of the characteristic radiation of element i, i.e.
EKαi . Equation 2 is the condition of normalization of the concentrations:‖C‖1 = 1.
These concentrations and the global efficiency have to be positive.

The above experimental situation can be achieved by monochromatising a
synchrotron beam or a intense X-ray beam as proposed by Figueroa [1], but
using now selective counting instead of integral counting as Figueroa used.

These equations can be written as a linear system similar to the one pro-
posed by Beattie and Brissey [2].

By defining ai = σi (hνi), and ai,j = µj (hνi) + µj

(
hνEKαi

)
, the equation (1)

can be written as:

Fi = KCi

ai
∑j=n

j=1 ai,jCj

, (3)

where K is ε√
2

and Fi is Gi/Ii . By rearranging equation (3) we get:

Fi

ai

j=n∑

j=1

ai,jCj − K Ci = 0, (4)
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j=n∑

j=1

Cj = 1

or in matricial form:
⎛

⎜
⎜
⎜
⎜
⎜
⎝

(F1
a1,1
a1

− K) F1
a1,2
a1

. . F1
a1,n

a1

F2
a2,1
a2

(F2
a2,2
a2

− K) . . .

. . . . .

. . . . .

Fn
an,1
an

. . . (Fn
an,n

an
− K)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
.

.

0

⎞

⎟
⎟
⎟
⎟
⎠

, (5)

j=n∑

j=1

Cj = 1

and by rearranging the above equation, we can write it in a form similar to that
used by Beattie and Brissey:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(1 − K
a1

F1 a1,1
)

a1,2
a1,1

. .
a1,n

a1,1
a2,1
a2,2

(1 − K
a2

F2 a2,2
) . . .

. . . . .

. . . . .
an,1
an,n

. . . (1 − K an

Fn an,n
)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
.

.

0

⎞

⎟
⎟
⎟
⎟
⎠

, (6)

j=n∑

j=1

Cj = 1.

The equations can be also written in a similar way to that proposed by
Lachance and Traill [3] :

By using equation (2) in the denominator of equation (3) we get:

Fi = CiK
ai

∑
j �=i ai,jCj + aii(1 − ∑

j �=i Cj )
,

j=n∑

j=1

Cj = 1

and rearranging the latter equation we can write it in a form similar to that used
by Lachance and Traill:

1
K

Fi

aii

ai

= Ci

1 + ∑
j �=i (

ai,j

aii
− 1)Cj

, (7)
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j=n∑

j=1

Cj = 1.

2. Solution of the equations

2.1. Solution of the equations when written in a form similar to that proposed by
Beattie and Brissey: the Perron–Frobenius theorem and the von Mises power
method

Let us write equation (5) in a shorter way by defining Ai,j = Fi
ai,j

ai
:

⎛

⎜
⎜
⎜
⎜
⎝

(A1,1 − K) A1,2 . . A1,n

A2,1 (A2,2 − K) . . .

. . . . .

. . . . .

An,1 . . . (An,n − K)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
.

.

0

⎞

⎟
⎟
⎟
⎟
⎠

, (8)

j=n∑

j=1

Cj = 1.

Here we have a system of N + 1 equations and N + 1 unknowns: C1 to Cn

and K. This system is linear in Ci and non-linear in K. The first N equations
form a linear homogeneous system, which in general has only the trivial solu-
tion, that is, Ci = 0 ∀ i. The condition for the existence of non-trivial solutions
is that the determinant of the matrix of coefficients be 0, then, there are infinite
solutions , in fact, a straight line of solutions. The intersection of this straight
line of solutions with the equation which expresses the condition of normaliza-
tion, equation (2), gives us a unique solution. So, when looking for non-trivial
solutions, we have to impose that the determinant of equation (8) be zero, and
this condition provides N solutions for K, and, from each value of K, a set of
concentrations Cn will be obtained.

Let us see it in detail: equation (8) can be rewritten as:
⎛

⎜
⎜
⎜
⎜
⎝

A1,1 A1,2 . . A1,n

A2,1 A2,2 . . .

. . . . .

. . . . .

An,1 . . . An,n

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

= K

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

,

which is an eigenvalue problem. The values of K that provide non-trivial solu-
tions are the eigenvalues of matrix A whose elements-are Ai,j and the non triv-
ial solutions are the eigenvectors [normalized to 1 according to equation(2)] of



V. Delgado and R. Figueroa / Sherman equations 1407

matrix A. The eigenvalues are the roots of the characteristic polynomial, which
is a polynomial of degree N in K coming from imposing that the determinant
of the matrix of coefficients be equal to 0. The fundamental theorem of algebra
ensures that a polynomial of degree N has N roots, and, if the coefficients of the
polynomial are real, the roots are real or complex conjugated numbers.

Up to now we have solved the system of equations formally, but the situa-
tion is far from satisfactory, since we have no a priori guarantee of the exis-
tence and uniqueness of physically acceptable solutions. We need to calculate
all the eigenvalues and eigenvectors of a matrix (which is a numerically compli-
cated task), and we have to look for positive eigenvalues and eigenvectors hoping
that there be one and only one positive solution. We have performed numeri-
cal experiments with ternary, quaternary and even quinary samples, and we have
always found one and only one positive eigenvalue. Thus, we hoped that by look-
ing through the eigenvalue problem throughly, the existence and uniqueness of a
positive solution would be proven, and so has happened.

The elements Ai,j of matrix A are always positive, then matrix A belongs
to the kind of matrices called positive matrices. There are strong theorems about
the eigenvalues and eigenvectors of positive matrices. In particular, the Perron–
Frobenius theorem [4] proves the following statements:

If A is a n×n positive matrix, there is one and only one positive eigenvalue
(called the Perron eigenvalue) such that its norm is the greatest of the norms of
all eigenvalues.

The Perron eigenvector – corresponding to the Perron eigenvalue – is the
only eigenvector with all its elements positive and their sum equal to 1.

Then, the Perron–Frobenius theorem ensures the existence and uniqueness
of a solution which fulfills the physical requirement of positivity and normaliza-
tion. Moreover, it also provides us with an efficient algorithm for obtaining the
values of K and Ci : The Perron theorem asserts that the Perron eigenvalue is the
dominant eigenvalue, since it is the eigenvalue with greater norm, and the calcu-
lation of the dominant eigenvalue of a matrix and its corresponding eigenvector
can be accomplished by the method of repeated multiplication from von Mises
[5, 6], which can be implemented as follows:

Step 1: Let us take an unnormalized positive vector Cun0 (for example
Cun0i = Fi) and normalize it. Call the result C0, and take K0 = ∑j=n

j=1 Cun0j

as in:

C0i = Cun0i

K0
.

Step 2: Multiply C0 once by matrix A to get a new vector, Cun1. Normalize
the result and obtain K1 and C1:

Cun1i =
j=n∑

j=1

Ai,jC0j , K1 =
j=n∑

j=1

Cun1j , C1i = Cun1i

K1
.
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Step 3: Multiply C1 once again by A to get a new vector. Normalize the
result and obtain C2 and K2:

Cun2i =
j=n∑

j=1

Ai,j C1j , K2 =
j=n∑

j=1

Cun2j , C2i = Cun2i

K2
.

Repeat m times:
The von Mises method ensures that C = limm→∞ Cm is the Perron eigen-

vector of matrix A, and that K = limm→∞
∑j=n

j=1 Cunmj is the Perron eigenvalue.
The successive iterations converge promptly and Cm, when m is large enough,
is a good approximation to the Perron eigenvector, while Km is also a good
approximation to the Perron eigenvalue K. At iteration m the relative error in
the estimate of the dominant eigenvalue K is of the order of

∥
∥
∥

λ2
K

∥
∥
∥

m

, where λ2

is the eigenvector of greater norm among the non-dominant eigenvectors.
The normalized eigenvector C is the unique physically acceptable solution

and K is the global efficiency.
The need of taking a vector with all its terms positive as the first term of

the iteration should be pointed out. Let us explain this concept: since matrix A

is positive, each intermediate result, Cmi, is positive too, and the iterative multi-
plication method converges to the unique physically acceptable solution. If there
were negative elements in the seed, the iterative method could diverge, so, math-
ematically, we have to impose the condition that Fi, – the production of flu-
orescence for each element – be greater than zero, which is a natural physical
constraint to the results of our fluorescence measurements. The iteration can also
be performed without normalizing the Cunmiat each step [7], but computational
problems of underflow or overflow are likely to appear.

2.2. Solution of the equations when written in a form similar to that used
by Lachance and Traill: an iterative method

Equations (7) can be written as:

Ci = 1
K

Fiaii

ai

⎛

⎝1 +
∑

j �=i

(
ai,j

aii

− 1)Cj

⎞

⎠ , (9)

j=n∑

j=1

Cj = 1.

The first n linear equations can be solved by standard algebraic methods
and their solution are the concentrations Cj as a function of the global efficiency
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K, Cj (K). Concentrations Cj(K) can be substituted for Cj in the last equation,
thus obtaining:

j=n∑

j=1

Ci − 1 = 0. (10)

When the value of n is small, it is quite straightforward to verify, by direct
algebraic calculation, that this last equation, which is a polynomial of degree
n in K, is the characteristic polynomial of matrix A. The direct verification is
unfeasible for large n, but the system of equations (7) is obtained by linear oper-
ations from the system of equations (4), so, both systems are equivalent and have
the same solutions, and 10 is, in fact, the characteristic polynomial of matrix A.

These equations in Ci and K can be solved in the following fashion: the
solution for K is the greater root of the polynomial in K 10. This root can be
obtained by using standard numerical methods, where the values of Cj(K) for
each concrete value of K needed in the search for the root can be obtained by
solving the complete linear equations (9) by standard algebraic methods. When
the solution for K is found, it is introduced in equations (9) and the values for
Ci are obtained by solving the linear system 9. This is a solid approach, but it
is very costly computationally.

However equation (9) can be written as:

Fiai,i

ai

⎛

⎝1 +
∑

j �=i

(
ai,j

ai,i

− 1
)

Cj

⎞

⎠ = KCi, (11)

j=n∑

j=1

Cj = 1

and it becomes apparent that we are dealing with a linear eigenvalue problem.
This eigenvalue problem has exactly the same solution as the eigenvalue problem
which has been discussed above (in section II A), because the equations (4) and
(7) are equivalent. In fact, equation (11) can be written as:

Fi

ai

j=n∑

j=1

ai,jCj = K Ci,

j=n∑

j=1

Cj = 1,
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which is exactly the same as equation (4). So we have the guarantee that there is
one and only one positive dominant eigenvalue with an associated positive nor-
malized eigenvector, and the von Mises iterative method for calculating the dom-
inant eigenvalue of a linear eigenvalue problem can be applied now in the follow-
ing way:

Step 1: Let us take a positive unnormalized vector Cun0 (for example
Cun0i = Fi) and normalize it. Call the result C0, and take K0 = ∑j=n

j=1 Cun0j :

C0i = Cun0i

K0
.

Step 2: Substitute C0 for C in the right-hand term of equation (9) to get
Cun1. Normalize the result and obtain K1 and C1:

Cun1i = Fi ai,i

ai

⎛

⎝1 +
∑

j �=i

(
ai,j

ai,i

− 1
)

C0j

⎞

⎠ , K1 =
j=n∑

j=1

Cun1j , C1i = Cun1i

K1
.

Step 3: Substitute C1 for C and K1 for K in the right-hand term of equa-
tion (9), to get Cun2. Normalize the result and obtain K2 and C2:

Cun2i = Fi ai,i

ai

⎛

⎝1 +
∑

j �=i

(
ai,j

ai,i

− 1
)

C1j

⎞

⎠ , K2 =
j=n∑

j=1

Cun2j , C2i = Cun2i

K2
.

Repeat m times.
The von Mises method ensures that: limm→∞ Cm = C is the dominant

eigenvector of the linear operator, and that limm→∞
∑j=n

j=1 Cunmj = K is the
corresponding eigenvalue. The successive iterations converge promptly and Cm

when m is large enough, is a good approximation to the positive eigenvector,
while Km is also a good approximation to the dominant eigenvalue K.

Thus, the normalized eigenvector C is the unique physically acceptable solu-
tion, and K is the global efficiency.

The need of taking a vector with all their terms positive as the firs term of
the iteration should be also pointed out. The seed and all intermediate steps have
to be now normalized in order to avoid that term ai,i(1+∑

j �=i(
ai,j

ai,i
−1)Cj ) take

negative values. By normalizing Cunmj at each step we also avoid computational
problems of underflow or overflow.
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3. Error calculation

3.1. Analytical bounds

Equations (1) and (2)

Fi = K Ci

ai
∑j=n

j=1 ai,j Cj

,

j=n∑

j=1

Cj = 1,

Ci > 0 ∀i,

K > 0

can be regarded as defining the fluorescence values Fi as a function of the concentra-
tions Ci and K. Since the values of ai,j and Ci are positive, the function is continuous
and derivable, so, we can calculate the differential as a function of the partial deriv-
atives:

dFi =
j=n∑

j=1

∂

∂Cj

(

KCj

ai
∑l=n

l=1 ai,jCj

)

dCj + ∂

∂K

⎛

⎝KCi

ai
∑j=n

j=1 ai,jCj

⎞

⎠ dK,

j=n∑

j=1

dCj = 0.

We have N + 1 linear equations with N + 1 unknowns, which can be solved
in order to obtain the values of dCi and dK as a function of dFi (theorem of the
implicit function). This ensures a continuous dependence on the errors in Ci and
K as a function of the errors in Fi , and formally allows us to obtain the uncer-
tainties in Ci and K as a function of the uncertainties in the measured Fi .The
practical situation is, again, uncomfortable, because the actual expressions, even
in a three component sample, are very cumbersome, but the propagation of rel-
ative errors can be dealt with in a rather simple way and simple results can be
obtained for majoritary and minoritary elements.

Let us see first the general behavior of the errors of the minoritary and
majoritary elements associated only to the positivity and normalization proper-
ties of the concentrations: since the error propagation is continuous, when the
absolute errors in Fi are small and symmetrical, the absolute errors in Ci are
small an symmetrical as well. Then the following results are obtained:
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First: since the solutions are always positive, this implies that Ci ±�Ci, > 0
∀ i ⇒ |�Ci | < Ci∀ i and then �Ci → 0 if Ci → 0, and the relative error of any
concentration is less than 100%.

Second: we have that
∑j=n

j=1 Cj = 1, which implies that
∑j=n

j=1 �Cj = 0.
Suppose that there is a majoritary element, i.e., element number 1, such that
C1 → 1; let us now calculate its relative error:

�C1

C1
= − ∑j=n

j=2 �Cj

C1
= − ∑j=n

j=2 �Cj

1 − ∑j=n

j=2 Cj

and, since �Cj and Cj → 0 as C1 → 1, this implies that �C1
C1

→ 0 when C1 → 1.
These two previous results about the errors in minoritary and majoritary

elements are simply associated to the continuous propagation of errors and to
the conditions of normalization and positivity of the concentrations, and they
are true as well as the solution algorithm produces positive and normalized val-
ues of concentrations. They are also independent of the actual values of relative
uncertainties in Fi (provided that they are small).

In order to go a step further, we will analyze the case of a majoritary
element and N − 1 minoritary elements. By taking the logarithmic derivative in
Eqs. 3 we get:

Ci = 1
K

Fi

ai

j=n∑

j=1

aijCj ,

�Ci

Ci

= −�K

K
+ �Fi

Fi

+
∑j=n

j=1 aij�Cj

∑j=n

j=1 aijCj

. (12)

Let us take element 1 as the majoritary element, then, when C1 → 1 the
values of �C1/C1, Cj and �Cj all go to zero and the previous equation is
simplified to:

�F1

F1
= �K

K

that is to say, the relative error of the global efficiency K is equal to the relative
error of the fluorescence produced by the majoritary element.

The rest of the elements are minoritary, so, Ci → 0 ∀i �= 1 and the equation
(12) is simplified to:

�Ci

Ci

= −�K

K
+ �Fi

Fi

.
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The relative error of the minoritary elements is bounded by the sum of the
relative error of their fluorescence Fi and the relative error of K.

In the general case, considering that Ci = 1 − ∑
j �=i Cj , the equation (12)

can be written as:

�Ci

Ci

= −�K

K
+ �Fi

Fi

+
∑

j �=i

(
ai,j

aii
− 1

)
�Cj

1 + ∑
j �=i

(
ai,j

aii
− 1

)
Cj

.

Then, we can deduce that the relative error of the element i is bounded as
follows:

∣
∣
∣
∣
�Ci

Ci

∣
∣
∣
∣ <

∣
∣
∣
∣
�K

K

∣
∣
∣
∣ +

∣
∣
∣
∣
�Fi

Fi

∣
∣
∣
∣ +

∑
j �=i

∣
∣
∣(

ai,j

aii
− 1)�Cj

∣
∣
∣

1 + ∑
j �=i(

ai,j

aii
− 1) Cj

<

∣
∣
∣
∣
�K

K

∣
∣
∣
∣ +

∣
∣
∣
∣
�Fi

Fi

∣
∣
∣
∣ +

∑

j �=i

∣
∣
∣
∣
�Cj

Cj

∣
∣
∣
∣

< N

∣
∣
∣
∣
�K

K

∣
∣
∣
∣ +

j=n∑

j=1

∣
∣
∣
∣
�Fi

Fi

∣
∣
∣
∣ .

This is a rather crude bound, and it is never approached in practice, as can
be seen in the numerical simulation made.

3.2. Numerical simulation

We have simulated the analysis of ternary samples made of Cr, Fe, and Ni
where the interelement effects by absorption are intense. The simulation has been
done by calculating the fluorescence production in ternary samples with concen-
trations taken at random. The values of the fluorescence cross sections and atten-
uation coefficients have been taken from [8, 9], and the random concentration are
generated in this way: for each element we select a random number uniformly
distributed between zero and one, and the concentrations are calculated normal-
izing these random numbers by making their sum equal to one.

From these random concentrations the fluorescence production for each ele-
ment has been calculated, and it has been varied by adding or subtracting a fixed
percentage of the production at random: 0.1% for Cr, 0.5% for Fe, and 0.9% for
Ni. From these varied fluorescence productions the concentrations of Cr, Fe, and
Ni, and K have been calculated by the von Mises method and they have been
compared with their true value.

The results are presented in figure 1, where each graph represents the rela-
tive error of K and of each concentration Ci as a function of each concentration
Cj . The number of simulated points are over 10,000.
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Figure 1. Monte Carlo simulated errors in the concentrations of Cr, Fe and Ni and in the eignen
value K in function of the concentrations of Cr, Fe and Ni. The simulated errors have been obtained
by assuming errors of 0.1% in the measurement of Cr, of 0.5% in the measurement of Fe and of
0.9% in the measurement of Ni. The errors are measured in %

4. The importance of positivity and normalization in the calculation of the
physically acceptable solution when the global efficiency is determined by
measurements

We have discussed the importance of the positivity and normalization of the
seed used in the iterative methods. Now we will sketch the importance of such
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conditions when the value of K is determined by measurements, which corre-
sponds to more realistic experimental situations.

Consider that an experimental value of K has been obtained by direct mea-
surement of the global efficiency or by using an standard sample made of a pure
element.

When the value of K is known, the equations (1) and (2) become a system
of N + 1 equations with N unknowns without solution due to the presence of
experimental errors, so, we have to seek for approximate solutions.

We will present now the results of numerical simulations of some solution
methods made with ternary samples of Cr, Fe, and Ni.

First method (Beatie and Brissey): when looking at the equations written in
the form similar to that of Beattie and Brissey 6 the first N equations are now
“almost dependent”, so, we can drop any of them and solve the resulting system
composed by the remaining N − 1 equations and the equation of normalization,
thus obtaining an approximated set of solutions for the concentrations. If this
process is repeated for each one of the N first equations, N sets of solutions are
obtained, and the mean and even the standard deviation for each Ci can be cal-
culated.

This approach works well for small errors (a small percentage) in the data
and intermediate values of concentrations. The values of the concentrations are
always normalized because the condition of normalization is always included in
the linear system solved, but when the concentrations are small, the linear system
is ill conditioned, the propagation of errors is very bad, and sometimes negative
concentration values appear. The solution method guarantees the normalization
but does not guarantees positivity of the concentrations, so the method is not
acceptable.

Second method (Lachance and Traill): by considering the equations writ-
ten in the form similar to that of Lachance and Traill 7 we found that the first
N equations have an independent term and can be solved. The solution is not
normalized because we have dropped the condition of normalization, but, after
obtaining the solution, it can be normalized, and thus a normalized set of con-
centrations is obtained. This method produces positive and normalized results
for small errors in the data and for any concentration values with ternary sam-
ples made of Cr, Fe, and Ni, but it is sensitive to the errors in K, even produc-
ing negative solutions when the error of K reaches 80%. If we look at equation
(7) we see that the positivity is not guaranteed because the term 1 +∑

j �=i(
ai,j

aii
−

1)Cj can take negative values since Cj , which are unnormalized, can take val-
ues greater than 1. The method may seem practically acceptable, but it does not
guarantee the positivity, and with samples of more components, the sensitivity to
errors in K increases because the condition of normalization 10 is a polynomial
in K of degree N , the latter being the number of components in the sample.
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Third method (positive and normalized iteration): we can write the N + 1
equations(3) as:

Ci = Fi

K ai

j=n∑

j=1

ai,j Cj , (13)

j=n∑

j=1

Cj = 1

and perform the following iterative procedure which preserves positivity and nor-
malization in each step:

Step 1: Let us take a positive unnormalized vector Cun0 (for example
Cun0i = Fi) and normalize it. Call the result C0, and calculate the normaliza-
tion factor of the seed N0: N0 = ∑j=n

j=1 Cun0j :

C0i = Cun0i

N0
.

Step 2 : Substitute C0 for C in the right-hand term of equation(13) to get
Cun1. Normalize the result and obtain N1 and C1:

Cun1i = Fi

K ai

j=n∑

j=1

ai,j C0j =, N1 =
j=n∑

j=1

Cun1j , C1i = Cun1i

N1
.

Step 3 : Substitute C1 for C and K1 for K in the right-hand term of 13 to
get Cun2. Normalize the result and obtain N2 and C2:

Cun2i = Fi

K ai

j=n∑

j=1

ai,j C1j =, N2 =
j=n∑

j=1

Cun2j , C2i = Cun2i

N2
.

Repeat m times.
This iterative procedure is exactly the same as that of von Mises because

matrix Ai,j has simply been scaled by dividing it by the value of K, so, the new
matrix has an eigenvalue which is 1. If the experimental value of K is exact,
Nm goes to 1. When K is affected by some error, the value of K converges to
a number different from 1, but the values of concentrations do not change. This
method of solution is insensitive to the errors in K.

Final remark (measurement of N standards): a final consideration must be
done with respect to the use of standards. If we measure N standards made of
the same pure elements which compose the sample analyzed and said sample
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is excited in the same conditions, we have the experimental advantage of avoid-
ing the need to know the exciting intensities Ii and the relative efficiency εri .The
equations for the sample and the standard will read:

Gi = εεri√
2

Ci

Iiσi (hνi)
∑j=n

j=1 µj (hνi) Cj + ∑j=n

j=1 µj(hνEKαi
) Cj

, (14)

j=n∑

j=1

Cj = 1

for the sample and

Si = εεri√
2

Iiσi (hνi)

µi (hνi) + µi(hνEKαi
)

(15)

for the standard made of the pure element i.
Dividing equation(15) by the equation(14) and finding the value of Gi we

get:

Gi = Ci

Si

(
µi (hνi) + µi(hνEKαi

)
)

∑j=n

j=1 µj (hνi) Cj + ∑j=n

j=1 µj(hνEKαi
)Cj

= Ci

Siai,i
∑j=n

j=1 ai,jCj

,

which can be written as:

Ci = Gi

Si

j=n∑

j=1

ai,j

ai,i

Cj = ri

j=n∑

j=1

ai,j

ai,i

Cj ,

j=n∑

j=1

Cj = 1,

where the ratio ri is defined as: ri = Gi/Si . In order to solve this system of equa-
tions we can consider the following eigenvalue problem:

λCi =
j=n∑

j=1

Si,j Cj , (16)

j=n∑

j=1

Cj = 1,

where Si,j = ri (ai,j /ai,i). One of its eigenvectors is that formed by the actual
concentrations,Ci, which is positive and normalized, and whose corresponding
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eigenvalue is 1. Since matrix Si,j is positive, the Perron theorem ensures that
there is one and only one positive normalized eigenvector with one associated
positive dominant eigenvalue, so the Perron eigenvector and the Perron eigen-
value of matrix Si,j are, in fact, respectively, Ci and 1.The von Mises method
will provide the positive and normalized concentrations and the value of λ. In
a real case, with errors in the measurements, λ will differ from the unity. The
propagation of errors in the ratios ri to errors in the concentrations and λ will
be as discussed above for the propagation of errors in Fi to errors in K and in
concentrations. In a real case, the between λ and 1 will be an indication of the
actual errors in the measurements and in the concentrations calculated.

5. The Sherman algorithm revisited

With the methodology here proposed we will revise now the algorithm
introduced by Sherman for the correction of matrix effects on X-ray fluorescence
analysis [10] . The Sherman algorithm is described by the following system of
equations:

⎛

⎜
⎜
⎜
⎜
⎝

A1,1 − t1 A1,2 . . A1,n

A2,1 A2,2 − t2 . . .

. . . . .

. . . . .

An,1 . . . An,n − tn

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

= 0, (17)

where Ci is the concentration of each element and Ai,j represents the influ-
ence coefficient of the element j on the analyte i, and ti is the time in seconds
required to accumulate a preset number of counts. It is claimed in [11] that, since
system 17 is homogeneous, only ratios among the unknown Ci can be obtained,
so an extra equation is needed, that is, the condition that the sum of all concen-
trations has to be the unit:

j=n∑

j=1

Cj = 1. (18)

Then, it is stated that by using equation(18), one of the equations from 17
is eliminated and so one solution is obtained. Since there are N equations in 18,
the elimination of each equation gives rise to N different systems of equations
and a different solution is obtained in each case. This is pointed out as a serious
drawback of the method because there is no way to decide among the N solu-
tions which is the correct one. It is also pointed out that another disadvantage is
that the numerical values of the coefficients depend on the excitation conditions
and on the number of accounts accumulated.
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Nevertheless, the system of equations 17 can be viewed under a perspective:
equations(17) are a linear homogeneous system of N equations. Linear Algebra
tells us that such a system has only the trivial solution, except if one of the
equations is a linear combination of the other N − 1 equations, and then the
determinant of the matrix of coefficients is zero. Only in that case ratios among
the concentrations can be obtained in a coherent way. Without any a priory

condition on the values of the coefficients, the N equations are linearly indepen-
dent, and system 17 has only the trivial solution C1 = C2 = · · ·Cn = 0; this
is incompatible with equation (18), so the linear system of equations formed by
equations(17) and (18) has no solution. If one of the equations of 17 is arbitrar-
ily replaced by equation (18), an arbitrary system of equations is obtained, and
an arbitrary solution for the concentrations is also obtained. This solution has
no relation with the one obtained by changing another equation of 17 by 18.
Only when the equations of 17 are linearly dependent there is a non-trivial solu-
tion, the ratios among Ci can be calculated, and any of the equations in 17 can
by replaced by equation(18), leading to the same solution for Ci.

In a real situation, Equations (17) are “almost dependent” and the substi-
tution of equation (18) for any of the equations of system 17 gives rise to a sit-
uation similar to the one discussed when we were dealing with the first method
– Beatie and Brissey – of obtaining approximate solutions.

Without any a priori condition, the determinant of the matrix of the coef-
ficients does not have to be null, but it should be pointed out that there is a
parameter on the matrix of the coefficients which can be taken as a supplemen-
tary variable. Let us see it in detail: the times ti in seconds required to accumu-
late a preset number of counts can be written as ti = Nacc/Ri , where Nacc is the
total number of accounts and Ri is the counting rate for each element. Since the
physical problem does not depend either on the actual number of accounts mea-
sured, or on the unit of time, we can write ti as ti = K/Ri , where K is a free
parameter. Substituting K/Ri for ti in the system of equations (17), Eq. 17 can
be written as an eigenvalue problem:

⎛

⎜
⎜
⎜
⎜
⎝

R1 A1,1 R1 A1,2 . . R1 A1,n

R2 A2,1 R2 A2,2 . . .

. . . . .

. . . . .

Rn An,1 . . . Rn An,n

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

= K

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

. (19)

As already discussed, this eigenvalue problem, when all the influence coef-
ficients An,n are positive, has one and only one positive normalized solution for
the concentrations which can be obtained in an iterative way. From a practical
point of view, the Sherman model 17 can be written (by dividing each equation
by its ti) as follows:
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⎛

⎜
⎜
⎜
⎜
⎝

A1,1/t1 A1,2/t1 . . A1,n/t1
A2,1/t2 A2,2/t2 . . .

. . . . .

. . . . .

An,1/tn . . . An,n/tn

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

= 1

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

(20)

and the corresponding eigenvalue problem to be solved in order to obtain a pos-
itive normalized solution is:

⎛

⎜
⎜
⎜
⎜
⎝

A1,1/t1 A1,2/t1 . . A1,n/t1
A2,1/t2 A2,2/t2 . . .

. . . . .

. . . . .

An,1/tn . . . An,n/tn

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

= λ

⎛

⎜
⎜
⎜
⎜
⎝

C1
C2
.

.

Cn

⎞

⎟
⎟
⎟
⎟
⎠

, (21)

where, in the ideal case, the value of λ is 1. The deviation from 1 of the actual value
of λ gives an indication of the goodness of the experimental data, Ai,j and ti .

6. Discussion

In a particular experimental situation characterized by selective excitation
and selective measurements, the Sherman equations become linear and have a
closed form solution with N sets of solutions when dealing with a sample with
a sample made of N components. Nevertheless, we can assure the existence of
one and only one physically acceptable solution whose concentration values are
positive and normalized. The existence and uniqueness of that physically accept-
able solution is strongly bounded to the positivity of the fluorescence production
cross-sections and of the attenuation coefficients.

We have to point out the crucial importance of imposing the conditions of
positivity and normalization of the concentrations in the iterative solution meth-
ods; this is equivalent to saying that the vector used as seed cannot be orthogo-
nal to the dominant eigenvector. Otherwise, the iterative process is not suitable,
since it will try to converge to one of the N−1 sets of non-physical solutions cor-
responding to the non-dominant complex or negative eigenvalues of the matrix.
These conditions are also of crucial importance when solving the equations asso-
ciated to other experimental situations which use standard samples. In particu-
lar, the Sherman algorithm has been reanalyzed and an stable way of obtaining
unique positive and normalized solutions has been given.

The propagation of errors is stable, and a priory bounds on the relative
errors in the concentrations have been obtained. This bounds are also based on
the conditions of positivity and normalization of the concentrations.

We hope that this kind of analysis based on the a priori physical condi-
tions the concentrations have to fulfill can be extended to polyenergetic beams
and to the production of secondary fluorescence
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7. Conclusions

It has been shown that in a particular experimental situation characterized
by selective excitation and selective measurement, the Sherman equations become
linear and can be solved in a closed form thus obtaining N sets of solutions
when dealing with a sample of N components.

It has also been shown that, in the physical case of positive cross-sections
and positive attenuation coefficients, there is one and only one physically accept-
able solution which can be obtained in a stable iterative way.

An iterative convergent method has been found for calculating such a
solution.

The method has been extended to experimental situations which use stan-
dard samples and to the Sherman algorithm.

The propagation of errors has been studied analytically and numerically
thus obtaining a priory bounds on the errors and showing that the propagation
of errors is stable.

It seems convenient to study the possibility of extension of the meth-
ods here analyzed to polyenergetic beams and to the production of secondary
fluorescence.
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